Against the Grain: Innovative Foods/Ingredients with Prebiotic Activity for Supporting Cardiometabolic Health by Tiffany Weir

Dr. Chris Gentile

Interception versus Therapeutic Models

- No symptoms of disease.
- Detection of a medical biomarker that is a strong predictor of future disease
- Treatment is based on biomarker detection

Intrinsically Connected: Prebiotics and Metabolic Function

Against the Grain: Innovative Foods/Ingredients with Prebiotic Activity for Supporting Cardiometabolic Health by Tiffany Weir

Against the Grain: Innovative Foods/Ingredients with Prebiotic Activity for Supporting Cardiometabolic Health by Tiffany Weir

Prebiotics for Vascular Health: Case Studies

Blueberry Polyphenols as Prebiotics

3 J Hunt. 2018 Feb. 1:48(2):209-239. doi: 10.1093/jn/tox027.

Blueberry Supplementation Influences the Gut Microbiota, Inflammation, and Insulin Resistance in High-Fat-Diet-Fed Rats

Santys Use ⁹, Kathurus (Karray ⁸, Rebocca Kirkland ⁹, Zathury (Granesodiel ⁹, Isan G Facher ¹,

2 PLoS Cress. 2013 Jun 28(8)(9):67467. doi: 10.1371/jbcarnal.pones.CGF/H07. Print. 2013.

Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon

Randomized Controlled Inal > J Agric Food Chem. 2013 Aug 28;61(34):8134-40. doi: 10.1021/JH02495k. Epub 2013 Aug 19.

Differential modulation of human intestinal biffdobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink

Simone Guglielmetti ¹, Daniela Fracassetti, Valentina Tavernitti, Cristian Del Bo', Stefano Vendrama Daniella Klimin-Zavar, Stefano Arioli, Bateria Rico, Musica Romani

Blueberry Consumption for Improving Vascular Endothelial Dysfunction in Postmenopausal Women with Above-Normal Blood Pressure

• Randomized, double-blind, placebo-controlled, parallel-arm clinical trial.

Estrogen-Deficient
Postmenopausal Women
with Elevated Blood
Pressure or Stage 1Hypertension
(Aged 45-65 Years)

Treatment Group
Blueberry Powder (22 g/day)

Control Group

Placebo Powder (22 g/day)

Primary Outcomes: Endothelial Function and Blood Pressure	
Oxidative Stress-Mediated Endothelial Function	
Blueberry Polyphenol Metabolites and Gut Microbiota	
Other Secondary Cardiovascular Outcomes	

Against the Grain: Innovative Foods/Ingredients with Prebiotic Activity for Supporting Cardiometabolic Health by Tiffany Weir

Participants & Compliance

|--|

Variable	Blueberry (n=22)	Placebo (n=21)
Age (years)	60±1	61±1
Years After Menopause	10±1	10±2
Estradiol (pg/mL)	16.8±0.9	17.3±1.1
FSH (mIU/mL)	67.7±5.3	66.2±5.2
BMI (kg/m²)	27.6±1.0	27.7±1.1
WC:HC	0.84±0.02	0.82±0.01
SBP (mmHg)	134±3	131±2
DBP (mmHg)	80±2	78±1
TG (mg/dL)	118±11	114±14
HDL-C (mg/dL)	58±3	59±3
LDL-C (mg/dL)	132±5	139±5

Unpublished Data

Blueberries Improve Endothelial Function

Values are mean ± SEM adjusted for age, BMI, years since menopause, hypertension stage, and hypertensive medication use. *P<0.05 compared to baseline. FMD/SR_{AUC}, flow-mediated dilation normalized to shear rate area under the curve.

Values are mean ± SEM adjusted for age, BMI, years since menopause, hypertension stage, and hypertensive medication use. *P<0.05 between groups.

Unpublished Data

No Effect on Central Arterial Stiffness, Blood Pressure

Values are mean ± SEM adjusted for age, BMI, years since menopause, hypertension stage, and hypertensive medication use. cfPWV, carotid-femoral pulse wave velocity; Alx@75, augmentation index normalized to heart rate of 75 beats per minute.

Unpublished Data

Against the Grain: Innovative Foods/Ingredients with Prebiotic Activity for Supporting Cardiometabolic Health by Tiffany Weir

Assessing the Influence of Blueberries on Vascular Oxidative Stress

 Determined by measuring FMD post-intravenous infusion of supraphysiologic dose of ascorbic acid versus isovolemic saline control.

Treatment effects mediated through reductions in oxidative stress

Oxidative stress-mediated endothelial dysfunction

Blueberries ↓ Oxidative Stress-Mediated Endothelial Dysfunction

Blueberry Group

5×10-4
4×10-4
2×10-4
1×10-4
1×10-4
Baseline 12 Weeks

Values are mean ± SEM adjusted for age, BMI, years since menopause, hypertension stage, and hypertensive medication use. *P<0.05 vs. saline infusion; #P<0.1 vs. saline infusion. FMD/SR_{AUC}. flow-mediated dilation normalized to, shear rate area under the curve.

Unpublished Data

Polyphenol Metabolites Increase with Blueberry Consumption

400000		* ^		•	Bluebery
300000-	Ť	1	#	-8-	Placebo
200000-			Ŧ		
100000-	1	1	<u> </u>		
0.⊥ 8355	A Weeks	8 Weeks			

Values are mean ± SEM adjusted for age, BMI, years since menopause, hypertension stage, and hypertensive medication use. *P<0.05 compared to baseline. #P=0.06 compared to baseline. *P<0.05 compared to placebo. Assessed using mass spectrometry. The sum of polyphenol metabolites assessed were summed for each individual.

Unpublished Data

Against the Grain: Innovative Foods/Ingredients with Prebiotic Activity for Supporting Cardiometabolic Health by Tiffany Weir

REPORTS

Increased Microbial Metabolites of Polyphenols Indicate Enriched Polyphenol-Associated Enzyme (PAZ-yme) Activity

Values are mean ± SEM adjusted for age, BMI, years since menopause, hypertension stage, and hypertensive medication use. *P<0.05 compared to baseline. Different letters indicate significant (P<0.05) differences between groups at that time Unpublished Data

Increased Microbial Metabolites of Polyphenols Indicate Enriched Polyphenol-Associated Enzyme (PAZ-yme) Activity

Values are mean ± SEM adjusted for age, BMI, years since menopause, hypertension stage, and hypertensive medication use. *P<0.05 compared to baseline. Different letters indicate significant (P<0.05) differences between groups at that time point.

Unpublished Data

Nutritional Benefits of Edible Insects

- More than 2 Billion people worldwide consume insects.
 - >1,000 species consumed
- · Sustainability factors
 - · Require less land, water, and food
 - · 7-8 weeks to maturity
 - · Produce fewer greenhouse gases

Rumpold & Schluter, 2013a; Ramos-Elorduy Blasquez et al., 2012a; Ramos-Elordua et al., 2007a; Finke, 2002a; Entomo Farms; Finke 2005.; USDA, 2016 National Nutrient Database

Against the Grain: Innovative Foods/Ingredients with Prebiotic Activity for Supporting Cardiometabolic Health by Tiffany Weir

Can Insect Chitin Act as a Prebiotic?

English name	Latin name	Stage	Fiber content (% in dry matter)
African migratory locust*	Locusta migratoria	Nymph	27
Jamaican field cricket*	Gryllus assimilis	Nymph	8
Yellow mealworm*	Tenebrio molitor	Larva	18
House Cricket ^e	Acheta domesticus	Adult	16.35 - 22.08
Banded Cricket ^b	Gryllodes sigillatus	Adult	8.33

What's Hopping? Impact of Cricket Consumption on the Gut Microbiota in Healthy Adults.

Randomized, double-blind, placebo-controlled, crossover dietary intervention.

Characteristic	Value
Age (years)	26.45 ± 6.33
Sex	
Male (%)	9 (45%)
Female (%)	11 (55%)
BMI (kg/m ²)	23.39 ± 2.46
Fasting blood glucose (U/L)	89.32 ± 6.94

Nutrient Composition Prepared Breakfasts (values per serving: 1 shake, 2 muffins)			
Nutrient	CONTROL	CRICKET	
Energy (kcal)	495.26	569.34	
Total fat (g)	12.75	18.12	
Total protein (g)	9.31	21.67	
Total carbohydrate (g)	88.36	81.34	
Sugars (g)	46.72	48.65	
Total fiber (g)	5.35	5.57	

Cricket Powder Selectively Alters Gut Microbiota

* We also observed cricket-associated decreases in TNF-a and increase in Alkaline Phosphatase Stull et al, 2018 Scientific Reports

7

^{*}Slide by V. Stull- Univ. Wisc: Bednarova, 2013; *Ramos-Elorua et al, 2007; Finke, 2002; b Entomo Farms; Stull et al, 2018

Against the Grain: Innovative Foods/Ingredients with Prebiotic Activity for Supporting Cardiometabolic Health by Tiffany Weir

Chitin Derivatives Have Reported Cardioprotective Effects

Oxid Med Cell Langey, 2019; 2019; 7658052.

Published online 2019 Mar 10. doi: 10.1155/2019/7658052 PMII

PMID: 30984339

Chitosan Oligosaccharides Show Protective Effects in Coronary Heart Disease by Improving Antioxidant Capacity via the Increase in Intestinal Probiotics

Tiechao Jiang, 1,2 Xiaohong Xing, 1 Lirong Zhang, 3 Zhen Liu, 4 Jixue Zhao, 25 and Xin Liu 26

Chitin-glucan and pomegranate polyphenols improve endothelial dysfunction

Audrey M. Neyrinck, Emilie Catry, Bernard Taminiau, Patrice D. Cani, Laure B. Bindels, Georges Daube, Chantal Dessy & Nathalie M. Delzenne ⁶³

Scientific Reports 9. Article number: 14150 (2019) | Cite this article

Chitin-glucan supplementation improved postprandial metabolism and altered gut microbiota in subjects at cardiometabolic risk in a randomized trial

Harimalala Bansivo, Zhengkiao Zhang, Maud Alliqier, Laurie Van Den Berghe, Morrique Sothier, Stéphanie Lambert: Persharon, Nathalia: Erusjier: Cherlotte Guera, Schristelle Machem, Audiou; M. Nayzinsk Benjamin Seathaler, Julie Redirjeauz, Matrin Botumien, Gislid: G. Moscioli, Vetranjiau, Macpart, Martine Laville, Stephan G. Bischeff, Janu Walter, Nathalia: M. Oxizanne & Jolie; Anne Nazare.

Scientific Reports 12, Article number: 8830 (2022) | Gite this article

Additional Prebiotic Research Projects

Lutsiv T et al (2022) Relandscaping the gut microbiota with a whole food: dose response effects to common bean. *Foods* 11(8), 1153

Lutsiv T et al (2021) Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses. *Nutrients* 13 (11): 3992.

McGinley JN et al (2020) Pulse Crop Effects on the Gut Microbial Populations, Intestinal Function, and Adiposity in a Mouse Model of Dietary Induced Obesity. *Nutrients* 12:593

Neil E et al (2019) Common bean (Phaseolus vulgaris L.) consumption reduces fat accumulation in a polygenic mouse model of obesity. *Nutrients* doi: 10.3390/nu11112780

Sheflin AM et al (2016) Dietary Supplementation with Rice Bran or Navy Bean Alters Gut Bacterial Metabolism in Colorectal Cancer Survivors. *Mol Nutr Food Res.* 61(1).

Grubb DS et al. (2020) PHAGE-2 Study: Supplemental Bacteriophages Extend Bifidobacterium animalis subsp. lactis BL04 Benefits on Gut Health and Microbiota. *Nutrients* 12, 2474

Trotter RE et al (2020) Examining the Impact of Probiotic Supplement Intake on Endothelial Function and Lipid Metabolism in Healthy Adults. *Beneficial Microbes* 11 (7): 621-630.

Febvre HP et al (2019) PHAGE: Effects of bacteriophage consumption on gut microbiota, inflammation, and lipid metabolism. *Nutrients* 11 (3): 666.

Gindin M et al (2018) Bacteriophage for Gastrointestinal Health (PHAGE) Study: Evaluating the Safety and Tolerability of Supplemental Bacteriophage Consumption. *JACN* doi:10.1080/07315724.2018.1483783

