Targeting the gut and its resident microbes to support athlete health

Dr. Neil Williams, MSc, PhD, SENR

School of Science and Technology Sport, Health and Performance Enhancement Research Centre Nottingham Trent University Nottingham UK

E: neil.williams@ntu.ac.uk

NTU Nottingham Trent University

Overview

- What... happens to the gut during exercise?
- What... is the gut microbiome?
- How & why...Prebiotic interventions may support athlete health

What... happens to the gut during exercise and physical activity?

What happens during exercise & environmental stress?

What impact does this have?

86% athletes experience bloating, nausea, flatulence, vomiting (Pugh et al 2017)

Travellers' diarrhoea remains prevalent in athlete settings (Nikolic et al 2021)

Compromised exercise recovery and nutrient absorption (Costa et al 2017)

What... is the gut microbiome?

The human microbiome

We are home to **100 trillion microbes!** "Our microbiota"

- That outnumbers our 37 trillion human cells
- Microbes contribute an extra 2 million genes to each person
- We are a superorganism!

The gut microbiome

Up to 1.5 kg or 3 pints in volume

The gut microbiota is one of the densest microbial ecosystems ever observed

Gut microbiome - one of the densest microbial ecosystem

<u>Health implications for</u> <u>athletes:</u>

- Risk of GI issue
- Risk of URTIs
- Recovery from exercise
- Nutrient absorption

Gut microbiota – a target in physical activity

How...Prebiotic interventions may support athlete health

Manipulation of the gut microbiota

Probiotics

Live microorganisms that, when administered in adequate amounts, confer a health benefit on the host

Yoghurt, kefir, sauerkraut etc.

Can influence the microbes that colonize our body Can grown, metabolize and interact, but

rarely permanently colonize

increasing levels of native gut bacteria

Prebiotics

Non-digestible food ingredient metabolised by beneficial gut microbiota A compound or ingredient that is utilised by the microbiota producing a health or performance benefit

Onion, garlic, Jerusalem artichoke, chicory etc.

Positive impact on the composition and/or activity of resident microbiota Increase microbe-derived metabolites important for health

https://isappscience.org/ https://prebioticassociation.org/

Probiotics use in athletes

Prebiotics in elite athletes

Vs

 Aim: to assess the effects of a 24-week prebiotic (B-GOS) supplement on the severity, duration and incidence of URS and GIS, markers of immunity and inflammation in elite rugby union players

2.8 g/day B-GOS

2.8 g/day Maltodextrin

Parker et al., 2023 Eur J Sport Sci

Prebiotics in elite athletes

Upper respiratory symptoms

Episode duration (days)

Prebiotic 7.4 (2.8) vs Placebo 9.8 (4.0); (P<0.05)

Gastrointestinal symptoms

Total symptom free weeks

Prebiotic 11 (5.2) vs Placebo 7 (4.9); (P<0.05)

Secretory IgA

Prebiotics and traveller's diarrhoea

2.7g/day B-GOS (PRE)

2.7g/day placebo(PLA)5 days precedingtravel

Continued for 7-15 days during travel period

Compliance group	Prebiotic (%)	Placebo (%)	Odds ratio	<i>P</i> -value
Full compliance	32 (19)	48 (29)	0.56	0.03
Conditionally compliant	41 (23)	54 (31)	0.65	0.08
<5days compliant	52 (25)	60 (30)	0.79	0.29

Up to 15-day log of TD symptoms

Definition of TD: 3 or more loose stools per day

↓ TD incidence in full compliant group who received PRE compared to PLA

Greater protective effect from 8-days onwards

Most effective on acute 1-day TD episodes (6 vs 20; 1-day incidents in PRE and PLA respectively; *P* = 0.004).

Hasle et al., 2017, J Tra Med

Prebiotics to combat asthma / EIA

- Asthma and EIA prevalent in elite athletes
- Altered gut microbiota in asthma

• 3-week Prebiotic (B-GOS) (5.5g·d⁻¹) vs Placebo (maltodextrin)

Eucpanic voluntary hyperpnoea

Mimics breathing rates associated with exercise.

Causes airway drying and in susceptible individuals EIA, and airway inflammation

Williams et al (2016) Br J Nutr.

Prebiotics to combat asthma / EIA

*Bimuno Day 0 vs. Bimuno Day 21 (*P* = 0.004)

Williams et al (2016) Br J Nutr.

URTIs and gastrointestinal (GI) symptoms are a burden for athletes.

- The gut microbiome significantly influences immune and GI function; therefore, this makes it a suitable treatment target.
- Emerging evidence now suggests that dietary prebiotics may reduce the burden of URTIs and EIA, and attenuate GI symptoms associated with training and exercise

But so what???

So what???

Increase athlete availability

Increase likelihood to perform optimally

Increase success?

Future directions for prebiotic research in athletes

Athlete directions?

- Female athlete health
- Gut-brain, gut-lung, gut-muscle axis
- Metabolic responses
- Different athletic settings

Support in occupational settings

- Physically demanding occupations
- High performance occupations

Formulations and combinations

- Synbiotic formulations
- Combinations with other sports supplements (e.g. protein, collagen)
- Product type ease of use for adherence in athletes

Nottingham Trent University

Nottingham Trent University (Sport Science)

Dr Kirsty Hunter Dr Graham Sharpe Dr Michael Johnson Dr Cristina Parenti Mr Connor Parker Miss Samantha Abbott

(Bioscience) Professor Philip McTernan Dr Alice Murphy Dr Gemma Foulds

De

NTU

University of Reading Professor Glenn Gibson Dr Gemma Walton Dr Carlos Poveda

Clasado Biosciences Ltd

Thank you for listening

Dr Lucien Harthoorn Dr Georgina Dodd University of Nottingham Dr Mathew Martin

University of

Nottingham

UK | CHINA | MALAYSIA

10

Professional Sport Dr Ben Cousins

Dr Neil Williams Nottingham Trent University

School of Science and Technology Department of Sport Science neil.williams@ntu.ac.uk